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Wastewater -based epidemiology and surveillance

/ What can wastewater say about

population health?
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Wastewater -based surveillance

/ Sewer pipe
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Created with permission from Cary, NC



Factors affecting the fate and transport of microbes/microbial responses

Amplification Processes
e Selection by other chemicals and nutrients
e Selection by other microbes/microbial
responses that affect microbial community

Contribution Processes

e Loadings at nodes connected to dypam_ics
sewers (i.e., location and time) e Climatic factors (e.g., temperature)

e Decay e Growth

e Dilution e Residence time

e Absorption, adsorption into e Physico-chemical (e.g., pH, ww temperature)
sediments _

e Persistence in biofilms Attenuation Processes

e Dilution
‘ e Changing case rates!! Decay
Climatic factors

Land cover (for combined systems)
Inactivation

Residence time

Physico-chemical (e.g., pH, ww temperature)

(1) Balleste 2019, (2) Ahmed 2021, (3) Pruden 2012, (4) Bertels 2022




Measurement Modeling

1. What can we measure in the 1. What modeling approaches are
wastewater to help us currently available that
understand these processes characterize these processes?
that can help adjust our 2. Given that this is a relatively
quantitation? new field, what work needs to

2. How can we leverage our data be done?

to best quantify our targets?

N\

Other wastewater
measurements or proxies!

Fecal indicators and
host-associated markers
(e.g., crAssphage)



Current models of fate and transport of microbes/microbial responses

e Examples:'.

@)

o O O O

©)

e Developed primarily for nutrient
responses, fecal indicator bacteria 1

SWAT
SPARROW @ /_/

AQUATOX . /,/ |

CE-QUA-W2 %8 M g

WASP , y | 7
SWMM (urban) f: osss

e No developed for viruses/pathogens ' )
Resolution at the sub-watershed level

e Require prior knowledge of delivery

1 Wisconsin DNR | Delorme Atlas, US Geological Survey (USGS) | WIDNR

Figure 3. Catchments from the SPAtially Referenced Regression on Watershed

parameters and/or Concentrations Of Attributes (SPARROW) for Kewaunee County, Wisconsin
contaminants at sources

(1) Costa 2021
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Presentation Notes
Current modeling approaches, etc… 


Flexible spatial predictor models for learning microbial spatial patterns
(Land-use regression approach)

Sum of exponentially decaying contributions (the distance away from sources
expected to observe x% reduction from sources)
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Selecting Hyperparameter Values for Spatial Predictor Models \/

®Observati0n Locations and Response

Point Sources and Observations of Concentrations for Agent alpha=0.05
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Modeled Infected Users Shedding Cot

The number of users
connected to sewer
segment, j

N
—2.315;
ri(ago) = Zm()jn]eajp( o Z])
] 0 90

The number of target microbial
responses that each customer is
shedding on average in the

sewershed on day / "
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Presentation Notes
The contributions that we would find at the WWTP influent or in solids would be a function of the mass of SARS-CoV-2 gene copes that each customer is shedding on average in the sewershed on day i TIMES the number of infected customers connected to sewer segment, j. We will be obtaining this information by combining what we know about the cohort studies, case data, asymptomatic cases, and shedding rates over time during infection to come up with these shedding rates across our sewer shed. Basically, from the disease maps we can come up with shedding maps and snap values to sewer network points. 


Observed SARS-CoV-2 __f,_\
(per volume wastewater) )00, |

. Low Value
. Mean Value
B High Value

Wastewater treatment plant
D (indicates location of sampling)

A

' Not shedding SARS-CoV-2

' Shedding SARS-CoV-2
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Modeled Users Shedding Contributions

Travel time from each location where the
target microbial response is being shed
into the network to the sampling point

N
—2.315;
xi(ago) = Z mo; exp( ZJ)

0
]O 90

Flow at the sampling point

The travel time at which you would expect
to see a 95% reduction of the target
microbial response from the input point 12


Presenter
Presentation Notes
We can estimate flow at the wastewater treatment plant, or sampling points (and along our whole sewer network). We will know estimates of the travel times from each location where SARS-CoV-2 is being shed into the network. We can estimate travel times at every point along the network (either using what Stacie has done, using what Ricky and some others are working on, or using the distance and average velocity of wastewater in the pipes to come up with an estimate). We then can try different values for exponential decay of SARS-CoV-2 by changing alpha_S, which represents the travel time at which you would expect to see a 95% reduction of SARS-CoV-2 gene copies from the infected customer input points.  


How does ocgg affect User Shedding

Decaying microbial response

1

0.8

0.6

0.4r

0.2

_0490= 5|hr
—(QLQ(F 15 hr

! ——————

10 15 20
Travel Time to WWTP (Hours)

25

13



If yellow-red dots on this network equal 777 jn Ji
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Presenter
Presentation Notes
Say that the output of the disease mapping→ shedding estimates looks like this when only mapping non-zero shedding occuring a these customer connections in the sewershed on day i=1 and day i=2. 


We might see time-travel decay and dilution in the sewer
network that resembles this for our i=1 and i=2
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Presentation Notes
With this equation we can create different maps of shedding and decay over travel times in the network and accounting for dilution. 


Compare the observed versus predicted to find the best decay parameter
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Presentation Notes
We can compare our measurements to our modeled values using these maps as input. We can try different values for alpha_S to see which yields the best model. 
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Developing a new spatial predictor models tailored to sewer networks for WBS

Residential Contributions to
( —2.37; ) crAssphage
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rau Mobility trends for places of residence.
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https://www.google.com/covid19/mobility/ Accessed: 02/03/2022.


https://www.google.com/covid19/mobility

Model accounting for flow
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m Model accounting for flow, and travel time influence range modified by ambient temperature
ag, = 10.7, A* = —0.242

R
20- 0.3300

03275

1 standard-deviation of temperature is
oz 9.72 degrees Celsius
Minimum recorded ambient temperature = -16.0 C
Maximum recorded ambient temperature = 25.4 C
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m Model accounting for flow, and travel time influence range modified by
temperature and increase ofthose staying athome from baseline (mobility)

an = 103, A" = —0.212, M™ = 0.245
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% Time spent at home from baseline

15-

Model accounting for flow, and travel time influence range modified by temperature
and increase ofthose staying athome from baseline (mobility)

ap, = 10.3, A" = —0.212, M* = 0.245
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Residential Contributions Model comparison
10-fold cross-validation rMSE

Univariate 045 T _
Regression Univariate -1
Model Coefficient R-squared o -1
(standardized) '
1. No Flow (NF) -0.185 0212 é”'%'
0.30-
2.Flow (F) 0.207 0.266 .
3.Flow modified by 0231 0333 H Modelm m
temperature (F-T)
Other findings/next steps
4.Flow modified by 0.244 0.370 I. Commercialparcelcontributions
temperature and 2. Linear modelwith residential/commercial
mobility (F-TM) contributions,combined sewer,industrial
flow,and pH




Developing a new spatial predictor models tailored to sewer networks for WBS

N 9 9T Commercial Contributions
1 —=-SL 1] to crAssphage
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Workplaces

Mability trends for places of work.
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Google LLC "Google COVID-19 Community Mobility Reports”.
https://www.google.com/covid19/mobility/ Accessed: 02/11/2022.
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Developing a new spatial predictor models tailored to sewer networks for WBS

Commercial Contributions to

crAssphage: Mobility factors
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Comparing Residential and Commercial Hyperparameters and Univariate Regression

Model Contribution Hyperparameters Univariate Univariate
Type Regression R-squared
Coefficient
0 A M
argg or argg(0) (Standardized)
Residential 8.39 NA NA 0.207 0.266
(Census)
Commercial 6.00 NA NA 0.136 0.115
(Parcels)
m Residential 10.7 -0.242 NA 0.231 0.333
(Census)
Commercial 9.09 _0.451 NA 0.175 0.191
(Parcels)

9.09

-0.451

0.175

0.191




0.45-

0.40-

Selecting models to use for residential versus commercial contributions

10-fold cross-validation rMSE
(Residential Contributions)

Modg!

10-fold cross-validation rMSE
(Commercial Contributions)

0.45-

0.40-

i SE

0.35-

Simplest



0.45-

0.40-

Selecting models to use for residential versus commercial contributions

10-fold cross-validation rMSE
(Residential Contributions)

0.45-

0.40-

i SE

0.35-

0.30-

[ Bestll

10-fold cross-validation rMSE
(Commercial Contributions)




log10 Cormmercial Contributions

Exploring collinearity between residential and commercial contributions
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Simglest Bootstrapped LASSO Regression for other factor

Not selected:
B oo e pH

EEEEEEE

= LITTLE MIAMI () Tim c Spent retail/rec.

e ® Time spenttransit
| e Industrial flow

log10 crAssphage copies per liter

8.75
Predicted

Variable Log 10 Log 10 com. Temp. Combined @ Log 10 Time spent Time spent
res. cont. cont. (F) sewer 48h prec. groc./pharm. at home
(F)

Std. Reg. 0.146 0.0580 -0.0420 -0.0545 -0.00555 -0.0188 0.0231

Coeff. (0.119, (0.02, 0.0941) (-0.0749, - (-0.115, (-0.02009, (-0.0480, 0.0105) | (-0.00530,

(95% BS Cl) | 0.173) 0.00903) 0.00637) 0.00979) 0.0515)

Variable 0.258 0.424 9.72 NA 0.211 6.18 4.29

Std. Dev.

Bootstrapped (BS) R-squared=0.404



/ \
“Best” Bootstrapped LASSO Regression for other factors

Not selected:

Sewershed

e, e pH
s e e Time spenttransit
RS SRR —— e Temperature
Variable Log 10res. Log 10 Combined Log 48h Time spent Time spent = Time spent  Industrial
cont. (F- com. sewer prec. groc./pharm. at work at home Flow
T™) cont. (F-T)
Std. Reg. 0.129 0.0365 -0.142 -0.0300 -0.0110 -0.0402 0.0752 -0.0271
Coeff. (0.0723, (-0.0139, (-0.210,- (-0.0573, - (-0.0342,0.0121) | (- (0.00272, (-0.0597,
(95% CI) 0.186) 0.0869) 0.0738) 0.00258) 0.103,0.0227) 0.148) 0.00549)
Variable 0.476 0.606 NA 0.211 6.18 10.0 4.29 3.94

Std. Dev.

Bootstrapped (BS) R-squared=0.354



log10 crAssphage copies per liter

10-

Simplest Contributions Spatial
Predictor Model

Sewershed
+  DAYTON
*  EASTERN
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log10 crAssphage copies per liter

“Best” Contributions Spatial
Predictor Model
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Discussion

Key microbial sewer fate and transport factors
e Dilution to flow
e Temperature
o Impacton amplification and attenuation
o Seasonaleffects
e Wherearepeople contributing to the ‘pooled”sample

Residential (census)versus commercial (parcel)
contributions
e Residentialmore importantthan commercial
o Information aboutpopulation distributions in
commercially zoned areas is needed
e Temperature,butnot mobility

Traits ofthe sewer network (e.g.,combined sewer,sewer
age,inflow and infiltration, industrial inputs)
Climate plays arole



Implications
1. Wastewater measurements may not...

e representdifferent populations within sewershedsequally =
e representthe same levels ofdisease prevalence during different .
seasons and mobility patterns L
o Monitoringlongterm trends given climate change?

uuuuuuuuuuuuuu

2.Keysewershed information needed thatis not publicly available:
e Extentofcombined versus separate sewers
o Inflow/infiltration information?
e Atleastafewestimatedtraveltimestorelate distances totravel
times
e Estimated industrial flow to WWTP

3.Non-homogeneous spatial distribution offecalconcentrations
across sewersheds and within sewer networks

e Decentralized wastewater treatment “
e Microbialpollution potential (e.g.,sewer overflow events,1eaks)  ipsmmmncorssogheaysioms.

through-cleveland-cause-overflow-prompt-
swimming-advisory-at-edgewater-beach/



https://www.neorsd.org/heavy-storms
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